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INVESTIGATIONS ON TEE STABILITY, OSC~TION, AND STRESS

CONDITIONS OF AIRI?IANXSWITH TAB CONTROL

FIRST J?AKCIALREPORT –DERIVATION OF THE EQUATIONS OF

MOTION AND THEIR GENERAL SOLUTIONS*

By B. Filzek

AIETRmT : For the design and the construction of airplanes the control is
of special significance, not only with regard to the flight-
mechhnical properties but also for the pro~ortional arrangement
of wing unit, fu8elage, and tail unit. whereas these problems
may be regarded as solved for direct control of airplane
motions, that is, for immediate operation of the control surfaces,
they are not clarified as to oscimtions, stability, and stress
phenomena occurring in flight motions with Indirect control, ss
realized for instance in tab control. Its modus operandi is
based on the activation of a tab hinged to the trailing edge &
the main control surface. Due to lift and drag variations,
mcments originate about the axis of rotation of the main contnol
surface which cause an u~r-down floating of the main control
surface and thus a change in the direction of the airplane.
Since this tab control means flyhg with ‘*freecontrol surfacel’,
the treatment of this problem should provide the basis on which
to judge stability, oscilhtton, and stress data.

Aside from the discussion of free oscillations and forced
oscillating conditions, this report points out methods to deal,
above all.,with starting conditions. The required mathematical
eqedients are suitable, not ODJY for the solution of the given
problem, but also of similar problems, and are therefore trea~d
in general formulation.

The present report is to represent a contribution toward the ‘
clarification of the problems srising and, first of a13, to treat
the .lOngitudinalmotiQn of m a~~ne. 1

*llUntersuchungentiberdie Stabilitiits-,Schwingungs- und Beanspruchungs—
verfiltnisse von Flugzeugen tit Hilfsrudersteuerung. 1. Teilbericht.
Herleitung der Bewegungagleichungen und ibre allgemeinen L6sungen.11
Zentrale ffi wissenschaftliches Berichtswesen der Ltitfahrtforachung (ZWB),
Forschungsbericht Nr. 2000, October 24, 194-4. This translation is the
first partial report (1. Teilbericht) of an investigation n!adeup of two
parts, the second part, FB2000/2 (2. Teilbericht), of which is NACA TM u98.
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1. INTRODUCTION

control of airplanes up to flying weights of about 20 tons is
with direct control, that is; direct operatIon of the control
by the pilot. However, for the modern large aircraft of about 30

tons flying weight and still more for the 3arge aircraft to be expected
in the future, the power required for direct activation of the control
surfaces increases so greatly that human muscle power is no longer sufficient.
One is obliged to use indirect controls, the necessary power being supplied
for instance by a servomotor. The tendency will be to manage with a
minimum of power.

The present report is to represent a contrilnrtiontoward clarification
of the problms arising and, a’hoveall, to treat the longitudinal motion
of an airplane,

11. SYMBOLS

The symbols used correspond to the German standards DillL 100 second
edition, July 1939; ~reov=s the following symbols exe chosen (cf. also
fig. 1):



NACA TM 1197 3

Imes of

partial

partial

the entire airplane

mass fuselage without

IMSS control

~ial -SS Of tabs

center of gravity of

center of gravity of

center of gravfty of

center of gravity of

surfaces

control surfaces and tabs

witbout tabs

the whole system

the partial masses ml

the partial masses ~

the partial masses ~

distance of the center of gravity of the &tial
mass ml .frau the center of gravity of the whole system

distance of the center of gravity of the partial
mass ~ fran the center of rotation of the main control
surface

distance of the center of gravity of the partial
m.ss m3 frcm

manent of inertia

maaent of inertia
through S1

mament of inertia

mm.ent of inertia

mmnent of Inertia

the center of rotation of the tab

of the

of the

of the

of the

of ‘the

entire airplane about y-axis

partial mass ml about y-xis

partial mass ~ about S2

partial mass ‘3 about S
3

elevator about axis of rotation
of the nain control surface

moment of inertia of the tab shout axis of rotation of tab

deflection of the tab

deflection of the tab required for attaining the safe
multiple of load

chord of the elevator + tab

chord of the tab

coefficient of the
horizontal tail
airplane

coefficient of the

air-force mument of the air-planewithout
referred to center of gravity of the

nox’malforce of the horizontal tail
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coefficient of the horizontal tail moment referred to the
axis through the aerodynamic center of the horizontal
tail para~el to the y-xis

coefficient of the elevator mcxuentreferred to the axis .
of r’otationof the main co~trol surface

coefficient of the tab mament referred to the axis of
rotation of the tab

a&le of attack at the location of the horizontal tail

mean dynamic pressure at the location of the horizontal tail
surface

mean velocity

mean downwaah

at the location of the horizontal tail surface

angle at the location of the horizontal tail

ratio of the air force damping of the entire airplane with
respect to lateral axis to the air force damping of the
horizontal tail

If similar symobls appear in the individual paragraphs (for
Instance, & = angle-of<ttack increment, AML = mmuent increment, A = down- 4
wash angle, Ak = determinant, A* = Routhts discriminant), they are dis-
tinguished by indices and their significance follows fra the respective
connection. k

III. PRESUPPOSllIONS

In order to circumscribe the range of validity of this report, the
necessary presuppositions shall be mentioned in advance; at the respective
places they will be especially emphasized:

1.

2.

39

4.

5.

Unsteady air force influences are not taken into account.

Flight motions are possible only in the X#g-@ane.

Method of small oscillations.

- c=e~ted c@rol stiaces, tmt is, the centers of
gravity lie on the axes of rotation of the control surfaces.

Omission of the mass couplings and horizontal tail surface
forces in the force eauations.=..

●

.

,
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6.

7.

8.

9.

10.’

r’

Omission of the mass couplings and of the force couple at the
horizontal tail at C~ = O (zero moment) in the equation of

moments about the lateral axis. 1

The velocity along the flight path v for the phenomenon under
consideration is assumed to be constant.

Air forces and moments are assumsd to be linear functions of their
~ariables.

The steady state about which the system oscillates is assumed to
be horizontal flight.

The dynamic pressure ratio gR/~ and the downwash factor ~/~—
are regarded as constant d-&ing the flight motions.

IV. DERIVATION OF THE EQUATIONS OF MOTION

For obtaining the equations of motion Lagrange~s methmi willbe
used which permits the required equations of motion of a system
with n degrees of freeda to be found frm the foll~ing generally
valid relation:

(1)

9

Since this report deals with accelerated motions, it is useful to select
for the determination of the kinetic energy T a nonaccelerated system

of reference. For the present pro’blemthe coordinate system fixed to the
grounilmay be regerded as such a system of reference. In’that system,
in its most general formulation, one would have to consider for an ab
plene in free flight the degrees of freedom

1. tmmslation of the center of gravity of the airplane in
Xg4.irection,

2. translation of the center of gravity of the airplane in Yg-direction,

3. translation if the center of gravity of the airplane in
Zg-direction,

4. rotation of the longitudinal inclination of the airplane about
the center of gravity of the airplane &

~. rotation of the lateral inclination of the airplane about the
center of gravity of the airplane (p,
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6. rotation of the compass angle about the center of gravity of
the airplane ~,

7. rotation of the elevator about axis of rotation of the main
control surface q.

However, fcxrthe consideration of the Mn@tudfnalmotion of an
atrplanb due to symmetric elevatm operation one may assume that the
airplane executes motions only in the X=ZQ-plane. ThuEIno motions

take place in the coordinates Yg, P, a~ ‘~
to the degrees of freedom Xg,Zg, 0, and V.

For the system sketched in figure 1 the
form

and the system is reduced

kinetic energy assumes the

2
+lj+fi~)

“}

(2)

J

The velocity coordinates Vsr of the.~rtial masses q result fra the

position coordinates ~r, ~r by differentiation with respect to time

as the relations

.

m
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T-s2 = igz + igz

Ts
2 = igz + igz

2-2
+01$

r 1
-201$ ~gsin$ + !igcos79

1

27s . ~g2 + fig2+ rH2$2 + 022(3 + fi)2
[ 1

+ 2r~ igsin a + %COS ’79
-2

[ 1+202(3 + fi)kgsti (0 + T)+ figco~(79+ 7)

:3)

.

.
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If the derivatives are formed according to the rule given in equation (l),
one recognizes that the equations of motion are no longer linear and thus
cannot be treated in a closed mathematical form. Therefore the expres-
sions are already linearized at this point, that is, one puts Cosx=l
and sinX = O.

These deliberations together with the summarizing of certain exore~
sions yield for

{{
T ; Xg2+=-

1+ 2dIj-F~ + ~rH(% – ‘Hn) + %e2rH + ~e3rH]

I

24zgp4?2 ‘m3) - ‘.9 I“a)

+ 2m3e3(i +

If one introduces

-LHkJjj+
+ 2(4 +

for the ‘generalized forces” Qr convenient symbols

and the derivatives
[1k%

read, if qh is regarded not

function

J

into (1), the desired equations of motion

as free coordinate, but as disturbance

/

(4)

J

,

●

m
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One sees that this system contains the eight variables %’ Zg> t9>7>
~, a, ~, and ~h. Since there exist here four relations connecting

the variable~, which are given by
\

$=a+y I

and

I

I (5)
.

~h = Th(t) (disturbance function)J
the four equations of motion derived In (4) are necessary and sufficient
for a caplete description of the problem. 1

The terms ~r and rHev~, respectively, contained in this genersl
formulation of the equations of motion permit - taking the weight manents
appearing in ~ and M= into consideration– the couplings caused by

unmass-kalanced control surfaces to be included.

An assumption of fully mass-balanced control S~fac08, that iss
el = 02 = 03 = O, does not only signify an essential simplification from

the mathematical point of view; it is, with respect to e2 and e3J

necessary to ensure freeda frm flutter.

If one considers, moreover, the orders of magnitude of the individual
sum terms in the corresponding equations, one finds that for rigid
aircraft part of the coupling terms is of subordinate significance; if they ,
are ne@ected, one obtains the following simplification of the equation
system:

or, written

2P

=–Asiny–Wcosy

Z~=G+Wsiny–Aces 7

$Fy ‘%

k 1~B +my@m-Ld; +F@&=kfm 1
in the manner cust-ry for flight mechanics,

(6a)
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~dv
E’a

-Gsiny

m-

(6~)

As shown hy flight measurements and calculations,1 the first equation of
(6b) affects the variation of the coordinates 7 and # only slightly,
due to the small.change ih speed v along the flight path at starting
conditions. Xf one disregards, therefore, this equation for the solution,
the remaining equations with v . const. = V. are sufficient for the

description of the problem and one obtains the equations of motion

mv~=A-Gcos7

Fyi = ML

J

the further mathematical investigations will be based on them in this shape.

The first equation of the equations of motion of (6C) dea~ with the
*

forces perpendicular to the plane of the trajectory.

The second equation represents the condition for moment equilibrium
about the center ;f gravity-of the
expresses the condition for mament
of the main control surfaces.

For the “generalized forces”
and M~, one makes the assumption
variables. Then the expressions

A = ~Fa

airplane, whereas the third‘equation
equilibrium about the axis of rotation

Qr, des@nated in (60) by A, ~
that they are linear functions of the

(7)

lBIbliograyhy (4)
J

.
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%
11

.

+{2#?H+*+
are valid for (6c,1) and (6c,2).

(8)

A and K are, therefore, relatively
inde~endent of-the &thod” of-c&trol by tab~. ‘ -

In expression of the external moment
%

in (6C,3), however, the
form of the tab control obtains decisive imp tance.

In ffgures 2 and 3 the most frequently used tab controls are repre-
sented schematically.

The”d.irectcontrol by tabs is constructed so that no direct mechanical
control possibility exists between control stick and tab. Instead, a
deflection of the control stick actuates a serv~it fixed to the main
control surface and thus effects a displacement with respect to the main
control surface.

For indirect tab control a deflection of the control stick actuates,
* by a puskpull control, a lever pivoting on the axis of rotation of The

main control surface. Due to the relative motion of the lever with reg~lnl
to the main control surface deflections of the tabs are effected. If o::e

% inserts, moreover, a spring between lever and main control surface, the
result represents a cmubination of a servotab control and a direct contrcd.
If one makes the qpring infinitely rigid, the system is transformed into a
direct control by main control surfaces.

For the control by
for ~ reads -

tabs visualized in f&ure 2 the expression

‘= ‘p++%+a+~?-“)A’@ (9)

the factor (l)Al~ is to be interpreted as damping factor of the main
control surface.

If one wants, on the other hand, to give the expression for an indfrec~.
tab control (fig.3), the relation

. “Hr=”CrH +”Fed’+”Sth+%

.
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must be taken

‘CrH
=

‘Fed =

‘Sth
=

MD ~ =

.
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into consideration, with

airforce mament of the not moving elevator

mcment of the spring

manent of the tab rod force

ma.uentof the main control surface damping = -(1)%qfi

If in figure 4

~ signifies the deflection of the driving lever a

v the deflection of the main control surface

TH the deflection of the tab

i the mechanical gear ratio between tab deflection and
driving leve; a

there exists between the three angles, due to
relation

flH = (~ - v)i(~,~)

Due to the deflection of the sprimz caused lxY
lever a, a

with CFed

of the main

moment of the foll~wi~- magnitud~

‘Fed = cFedf(Q,q)

signifyi~ the moment of the spring

control surface referred to 1°.

mechanical coupling, the

(lo)

the activation of the
ariaee

The tab push-rod force

rotation of the main control

with

(11)

about the axis of rotation

PSth produces a mcment about the axio of

surface
●

‘Sth = M~l(Q,q) (12)

(12a)

-J

●

J

.
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4
For small angles the gear ratio may be put as

i(q),~) = const. = i (lea)

f(%q) =(g -T) (lM)

Only variations with respect to a condition of steady motion are
decisive-for the course of th~ motion. Thus one will.int~odace for
variables the expression

Y =

a=

One then obtains for

dymvo— .
dt

and by subtraction of the

the relation
%

mv$ .
dt

● ✌

✎

Y. +AY

a. + Aa etc.

Instance for the first equation of (6c,1)

&a
~# (UO +L@) – G COS (70 +A7)

steady starting condition .

&a
‘ ~$ao –G Cos y.

&a
~c7Aa +G sin 70A7

13

thg

(13)

I

,
I

If one treats the expressions for ~ and Mm ina shilarmamer and

takes into account that the coefficients Cm, C~, ~, ~H may be

2 for tnstance forexpressed as llnear functions of the corresponding ar@es

CrH=HaH+~]~+~]Th m(14)

their variations with respect to the steady condition assume the form
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and

or, respectively, taking (10) to (12) into consideration,

the factor
(l)A

~q of the last term of the equation (9b) is

(*)

} 1CFed ‘q (9b)

to he regarded

as damping parameter of the main control surface.

For the angle of attack ~ at the location of the horizontal tail

the expression customary in flight mechanics will be used.

If in (13) the horizor@al flight is regarded as starting condition, one
obtains

and frcm the relations connecting
consideration the expression

.

C@a

(15)

the variables (~) result - taking into

d =do+Ad

and

5=%. —---d(AO) A;
dt dt

f

.
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Ad= Aa+Ay
“1

(16) -

. .
4 .a+y .;+ C1+L J

With the according sunmarizations and transformations the relations
(5) tO (16) yield, inserte~ into (6c), In the conventional fcm the
differential-equation system with the two degrees of freeda a and q

(o) A2@q + “&+
(1)A2a& + (o)

A2@a = C@(t)

J

him to plt for
case of direct

in the case of

the veriation of the disturbance function AS(t) :n
tab operation

As(t) = Aqh(t)

indirect tab operation

As(t) = Aq(t)

The differential equations thus obtained may now serve, for a
prescribed dynamic pressure, for the determination of thd course of the o
iiovement. Generally, however, it will be desired to treat the entire
dynamic pressure range in a closed form. If one chooses, therefore,

T = @ t as new independent varia~le and puts Aq = Aq (T);
Aa = &(T); A~h=@h(T) and, respectively, Aq = &p(T) one obtains

These relations (18) substituted into (17) permit, after division by ~,
a representation of the differential eqmtions no longer explicitly
dependenton the dynsmic pressure which may then be written
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w

q“ + ‘l)Aqq, + ‘O)A@~ + ‘2)A~af1 + ‘l)A~a, + ‘O)A~a = c@(T)

1

(17a) “

(o)A2#q + a“ + (1)A2aat + (o)A*
= C*(T)

If one takes into consideration that the mument due to Cm in (8) and

(&), respectively, remains sraaldin ccqari~on with the other quantities,
the coefficients may be written

a) for direct tab control

(0) %HFHLH ‘H
Alq =.— —.

aq F* q

of the main-control-surface damping

1
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a

b) for indirect tab control

-
.

(l)AIT parameter of the mai=ontrol-surface damping

.

“(17C) ‘

In the scope of this investigation it does not signify an essential
limitation if one regards both Qnamic pressure ratio .gH/~ and downwash

factor ~/& as constant not only during the flight motion but also fcr
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the dynamic pressure range to be investigated, so that with this
presupposition a linear,-inhomogeneous o; cum~lete system of differential
equations with two degrees of freedom is yresented for discussion.

GENERAL SOLUTION OF LINEAR DIFFERENTIAL

EQUATION SYSTEMS (DES)

of the solutions of inhomogeneous differential equationsEhwledge
or, respectively, differential-equation systems is a presupposition for
the treatment of starting phenomena as they are of importance in flight
mechanics3 and other technical fields. These solutions are given in the
most general form for a linear DES with constant coefficients and n degrees
of freedam with arbitrary disturbance functions and starting conditions.

1. Solution for Arbi.traryDisturbance Functions and Starting Conditions

One assumes as given the DES with n degrees of freedma

(19)

Therein is:

K s1,2,3 . . . . . . n the designation

u =1,2,3 . . . . . ● n the notation of
equations

of the dependent variablea

the independent differential

IJ =0,1,2 ...*.. m the order of derivative of the respective
dependent variables

XR(V) = the ~th derivative of the ~-th variable; X&o) is to
be . %

(W)a
m = the coefficient of the DES which stands for the p-th

derivative of the K-th variable in the u-th line.

v

.

‘4

w

3Cf. bibliography, (4) and (6)
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The desired solution of this problem can be

form by using the Laplace transformation.
are introduced here without any proof.

19.

given in a partictirly clear

The required auxiliary theorems

If one applies to (19) the Laplace transformation

~/F(t~= ~F(T)C-pTdT
L> JO

and bears in mind that there exists the relation

(20)

(21)

(with the sum to be put equal to zero for v = O), (19) is transformed
into

or

iGfJp)4d‘~{FJt)}‘a’Jp). (22)

with

functions at most (23)
of -th degree in p

guR(P)=$ F1(v)avKXK(~)(o)p~-A–l
that is, functions (24)

~=1 A=O at most (m – 1)–th
degree in p

bibliography (8)

r

.
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Therewith
algebraic

I?ACATM 1197.
.

the linear DES with constant coefficients is reduced to an
problem with the n unknown </X,>. The coefficients of the

~~{}

LY
XK are rational integral functions at most

m
of the n+th degree

in p. The absolute terms.on the right side of (22) consist of the
LapUace transforms of the disturbance functions of the DES (19) and
rational integral functions of at most (m - 1)-th degree in p which

contain all starting conditions XK(h)(0) with A = o, 1, 2 ..... (m-1)

of the problem.

If one applies to (22)
the solution of the unlmuun

as folJmus:

..

the theor~ of the theory of determinants,
~{X~ may in the most general formbe written

therein D is the coefficient determinant, that Is D = O, the character-
istic equation of the DES (19) b

D(p) = fDR(p) (26)

DK in each case the determinant which results fram the coefficient ~

determinant D
absolute terms

If its ~-th coltzmnis rephced
of (22)

d+wj +f @P)
tc=l

Since, however, the determinant DK may be

by the sequence of the

(27)

written as sum of two

determinants one of which contains in the respective column the Laplace
transfmms of the disturbance functions Fu(t), the second the sum

5 gDK(P), ft will be useful to agree upon the following:

(A)(0) # O one is

tc.1

If in (22) all Fu(t) = O and at least one Xk

dealing witha hunogeneoua cauponent solution; if at least one Fu(t) # O

and all XK(A)(0) = O, with & inhomcgeneous one.

With this stipulation (25) nmy be Written also

4

Y
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k

<{}
DK~~ +~~h~XK =y —

D
(28) !

. I
If one now imagines the determinants written down and calculated, there is

1. D a polyncm.ialof at most (mn)-th degree in p

(26a)

2“ ‘Icinh a sum of polynomials of at most m(n — 1)–th degree in p,

since the K-th column contains the sequence of the

Lapkce - transform <fu(t$ If this determinant DKi~ is

developed with respect to the &th column, one can also write

(29)

with AUK
{}

being the algelraic caplment of the elemmt <Fu(t) and a

polynomial of at most m(n– 1)-th degree in p.

3* Dkha is a polynomial of at most m(n – 1)-th degree in p

(30)

so that after these deliberations (28) may be written in the “
form .

(2%)

with AUK’ and D*m@ representing rational functions in

the form of real fractions in p.

If the characteristic equation (26a) has only simple roots designated
by pw(p = o, 1, 2 ..... (mn – 1)), the rational functions in the form &

real fractions of the right side of (28) may be represented with the aid
of decaposition to partial fractions in the following manner

.
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therein

[q ‘V)(p-)D’CPJ = mJ p=pp

N./VMTM1197

(31)

(32)

(33)

with the raised n(y)” signifying that the faotar is to be put equal
to ‘lH for which u = w.

If one now introduces the two funotions of time

and

(34)

.

thefi kplace t~foxme will be e~ctl.y identical to t~ decompositions
*O pa~ti=l fractions represented in (31) and (32).

Therewith (28) and (28a), respectively, are transformed into

and, using the convolution Ealtungsj theorem 1

a

m

one obtains

m
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*

If one now cancels a@n
(35) into conside-tion,

the Laphce transformation and takes (34) and
there results as solution of (19)

(36)

Thus, in the most general form, the solution of a linear DES with
constant coefficients for arbitrary starting conditions and integrable
disturbance functions is indicated in closed form.

It has to %e noted that (36) was derived only under the assumption
of simple roots pw of the characteristic equation D(P) = O of the DES.

If the solution for multiple roots of the characteristic
equation D(p) = O also is of interest, no particular difficulty is
encountered if the corresponding expressions of the related decompositions
to partial fractions are taken into consideration and introduced.

b

2. Solution for Constant Disturbance Functions and Arbitrary Starting “
conditions

.
For the practical engineer, however, this general,solution gains full

significance only when he is given ways,and means to represent the desired
functions XK numerically for his statement of the problem. The

solutions XK may be regarded as lmown when one succeeds in representing,

for analytically-prescribed disturbance functions FW(t), the quadrature

of the time integral

r

Fo(T)O-p~Td.T in closed form.

o

In all cases where a representation in closed fam is difficult or,
respectively, the Fu(t) are not prescribed anal@ically but are, for

instance, lmown fram tests as diagrams, there exists fundamentally the
possibility of replacing the function Fu(t) with a step function

according to figure 2 in such a manner that the areas enclosed by the
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curve FU(t) or, respectively, by the step function and the abscissa
1

are equal.

According
arbitrary time

rt@-At

cl‘w

.

to the mean value theorem of integral calculus, in an
interval At

FU(T)dT =AtFu(t~) =A~U(tV +$At)

()~$$1

If one performs the limiting process with At~O, the step function tends
toward the function Fu(t) according to

that 5.s,
turbance

one can approximate an arbitrarily prescribed integrable dis-
junction Fu(t) by according selection of the At with arbitrary

accuracy.

One can therefore visualize any arbitrary disturbance phenomenon as.
built up frcnnconstant disturbance functions Cv which ccmmence to act

at the t~B tp~ so that one obtains a very serviceable approximation far

the component solution XRfti of the inhcmogeneous DES by superposition

of the partial solutions due to the constant disturbances Cv“

For investigation of starting conditions the explicit farm of (36)
shall thus be given only for

FU(t) =

The inhmogeneous part of

— —

Const. = co

(36) then obtains the form

4

.

*

w
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which can still be

If one forms,

considerably sfiplified.

namely, frcxu(31) the linear ccznbination

the numerator of
one obtains fra
by replacing the

of at most m(n -

25

(37)

(38)

the left side of (38) represents a determinant which
the determinant of the characteristic equation (26)
K-th column by the Cu; thus one obtains a polynomial

1)–th de~ee

For (38) one can therefore write abbreviatedly

.
while (37) obtains the form

If
to

(3@)

(37a)

one introduces,“moreover,for the hanogeneous canponent solution according
(30)

1

and defines a function of time dependent only on the roots p
v

of the

characteristic equation D(p) = O
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.

its A-iih derivative with respect to time is

(40)

(40a)

and the solution of linear DES with constant disturbance functions and
arbitrary starting conditions obtains the very clearly arra~ed form

whereas the derivative with respect to time of the ~—th coordinate is
given by the easily obtainable expression

ik =em-1 (A)bkqh+l) (t) +>’$=1(A)~K+x+2)(t)
A=o ?@

(41a)

Sumnariz ing, it may be repeated that the solution for constant
disturbance terms may be represented in a cle form: the determinants
D(p) are to be determined according to (?6) and AK(p) with the

coefficients (A)b according to the rule (39) whereas the coefficients
(x)cK and the ~Ktio,n of time q(t) are given by (30) and (40),

respectively.

3. Solution for Harmonic Disturbance Functions and Arbitrary .
Starting Conditions
,.

If, aside frmn the starting
also are of interest, it will be
in the fom

Fu(t) =

phenanena, periodic permanent conditions
useful to write the disturbance functions

Cuei%)t

~ -y be a real as well as a canplex quantity. (36) yields as solution

the relation

.4,

b

4

*

.

b
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i

.

and one reuagnizet3that particular-attention must be paid to cases where

~=Pu (43)

Since all roots pk were assumed different frm each other, this

case will occur precisely for . .

If one writes (42) in the form .

(42a)

and if now ~~ po, the first of the sum of (42a) assumes the indefinite

form 0/0, whereas the rest rmains certainly finite
parts R(%) of the roots are less than zero.

Thus the further deliberations concern only the
which one has to perform the limiting process

when the real

first expression for

1

,

if one performs once more a limiting process with t+.
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{

o

lim t>ot =
t+co

w

one recognizes that the solutions ramin
are R(@)CO.

Only under this assumption it seams

for R(po)<O

for R(PO) Z O

finite only if all real parts

logical to speak, in connection
with (42), of a permanent condition for which then the relation

‘KDau** = e 71 C$- ~;m”t
.D.l~=o - P~

iS valid.

From (31) fol.luusfor p = i~ the relation

and one obtains

With the designations

(46)

(47)

(47a)

(4p)

4

.

+Wlkanslatorts Note: The sulmcript “Dau” is an abbreviation of
the German word “Dauerzustand” signifying “permanent.”
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L

respectively; and the fact that real as well as imaginary part of (47)
represent solutions, one obtains by transfomtion

and

respectively;

Cos Q@ - sin Qut1 (4&)

-1

J

with the amplitude fiction

and the phase displacement

(50)

(51) ‘

One has to consider that the expression takes into account the excitation
of each individual coordinate with a different frequency. One then has

to stress not only that it is possible to eliminate the roots of the
characteristic equation but also that one may successfully include with the “
functions defined in (x) and (51) the influence of the v–th excitation
on the ~-th coordinate, and _bha* one may obtain the total solution of
the permanent eqmtion by superposition of the partial solutions.

With these statements we shall regard the most general case of linear
DES with constant coefficients and n degrees of freedamas closed.
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VI. SOL~ION OF TEE EQUATIONS OF MOTION
DERIVID IN (IV)

The application of this method to the treatment of the prescribed
differential equation system (17a), with the coefficients (17’b)for the
disturbance functions

AS(T) = co~st = f%ax

and

AS(T) =&&xeiM

proceeds particularly simply.

Although the disturbance function -x . const. is not exactly

realizable in practice, it Is well to note its solution. It represents
the upper limit for the controllability of an airplane by tab and may
serve as a comparative measure for control phenomena depending on time.

The explicit representation for periodic disturbance functions may
be particularly valuable when information onresam,nce positions, amplitude ●

functions, and phase displac~nts is required.

If one wants, on the other ha”ti,to estimate the possible error which .
may appear with the problem discussed in Section V,2 - to replace dis-

turbance functions dependent on time by suitable selection of constant
disturbance functions Cu – it is suitable to use disturbance functions

linearily dependent on the.

1. Solution for AS(7) = Const. =%x

If one takes into consideration that by the selection of the steady
initial state all starting conditions are Au =A~ . & = ~ = O and
divides the equations of (17a) by-x, using further on the designations

Aa
-Y = &X2 and A = Xl, one obtains according to (41) with n= 2

x
andm. 2 the relations

,

●

h

.



.
●

and

2
iK =

GA

reOpectivel.y.

For the determinant of the ckmcterlstic

D(p) =

(A) bRT(A+l)(t)

equation (26) one hm to put with (23)

(m)

.

((o) (1) )(alqP + P2
(o)

alq + )
ah+ “)a~ + ~’)a+

= & aP& (53)
U=o

((o)
a2q

)
+0+0 ( )(0)a% , (L)a~ + *2

arranged according to powers of p, the relatkme



. . .—

a2 *

.

*3 .

(0)a (0)a
lq la .

(0)a (0)a
ti~

I
o 1

+

i-

() (l)aa

I o (l)am

(0)a (l)ati
q

(0) (1)
a2q %

. 1

.

(1) (0)ah
alll

+

o (0)a
‘i%

are valid for the coefficients of the detemninant (53].

The detemainant AK(P) which one obtaine accord.q to-the rule (39) by replacing the kth

column of (53) by the disturbance term Cu, alao arranging them according to powerB of p, ia

!2

. ‘ * . . ●



, ●
✎ ❆

with the CC9ff10iOtiB

(l)b =
2

m% .

o

1

0

C2

c1

C2

(*)

w
u
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With (hO) the function Q(t) is represented by the relation

wherein pv are the simple roots of the characteristic equation (53)

andwfth (33)

For the
ca8es.

a) All

b) NO

c) Two

a) All roots

(55)

(5>)

numerical utilization

roots real

of (55) one has to distinguish three

real and one pair conjugat=cmplex roots

pairs con@gatRcmplex roots

of the characteristic equation real

If all roots ~ are-real, the A-th derivatives of (55) appeari~

in (52) and (52a) are

and the solution (52) obtains immediately the form

(56)

(57)
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with

.

and

respectively.

b) Two real and $me

Since here and

complex quantities

(57a)

in terms of real quantities proceeds somewhat less e3mply.
presence of con$zgate-c~lex roots signifies only that the
contains periodic functions.

If one, therefore, splits off the two real roots Pos

the pafr of conjugat=oalex roots by p = Kltiwl, one
2>3

(56) the expression

(5W) ,i. = & kpwe~’
p=o

pi2irconjugate-cagplex roots

also in the case c) in the expression for (p(M(T)

pu appear, the representation of the solutions (Z’)

However, the

solution

P~ and designates

may write for

.

.



36

and

NACA TM 1197

.

●

-L
B. =

co =

N.

1

(k)
co=p~c 10

A J. -L -L L

(k) (k-l)B . ~ (A-l)c
c1

= w. 1 -1 .

If one now substitutes (58) into (52)
of the solution, one obtains (58) in terms

-L 1. J. -L

and adds similar canponents
of real quantities

.
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a

with

.

and by differentiation with respect to the the velocity

(59~)
1

with

c) Two pairs of conjugate+omplex roots

This case is solved, if one puts po,l= l@iWo

d p2,3 = K@wl~ with the relation

@ (T) =,:0
{
‘X)Busin woT +

}

‘X)Cvcos wuT eKu7

(59C) ,

((%))



38 NACA TM 1197

with

B. = W.(!’: ‘1’){% [@ - .l)’ - (wo’ - .,’)] - %’~o - ~1)}

(‘1 %.2+t’
f[

J

co=- ) .(% - RI)’ - (%’-q ($+ 21COW0Eo — K1

B1 = Q[l~o - .1)’+ (.0’ - w.’)]+ al’(.o - ..)}

cl. -

{

“+ m. [t. - %.)’+ (VO’ - Wlq
(+

- ‘KIWI Ico- K1

N=

{

D(0)WOW1 @o
- ‘~)’ + h - ‘Vjp - ’02+ b ‘ Wj

(x)B ~ (&l)B _ ~ (A-l)c
u= u Uu u

(L)cu=w (x-l)B +R(x-l)c
o Ill) u

If one introduces here also (60) into (52) and,forms the”sum of similar
terms, there appears here as the type of solution the form

~~ = AK(0) 1

{ !

+ > au~in WUT + pu~os Wu e
lc~T

D(0) ~
(61)

with

(6M)

●

✎

:6Qa)

A

.
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the derivative

with

-1

2. Solution for Ehrmonic Disturbance

39

( 61b)

(61c) :

The solution of this special case is suitable for demonstrating the
behavior of airplue controls by control surfaces and ‘tabsfor periodic
excitations as they may be caused, for instance, by engine vibrations,
fuselagsAending oscillatloM, or torsional oscillations of the stabilizi~
surfaces. However, one will have to pay special attention to the permanent
fcmced oscillating state in ccqarison with the starting conditions. “

Noting the fact that the function ei~ which is
is independent of any summation, me obtains with (47)
(~) as solution the permanent equation ‘

‘tcDau=

the values of the determinants AK(P) and D(p) have

dependent on time
and the relation 1

.
according to (~) and (53) for purely imaginary arguments

(62)

to be deterntined

Consequently it is useful to choose for these cmplex
the form

P = i.!l.

expressions
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AK(isl)= 7R($l)+ 15K(Q)

D(i@ = C(O) + i$(~)

with the real functions of.Q

YE =
(0)b (2)b Q2

tc- K

t5K=
(l)b~

K

the coefficients

If the real
because of (38)

(53a) and (*), respectively.of which are given with

part of (62) is to be regarded as solution, there results

xlcDau=vRcos(m + e~)

with the amplitude function

and the phase displacement

(64)

(aa)
f

.,

.

(641)) ~ -

●
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3. Solution for

●

A~ already

Linearily

menti.oned

41

Dependent Disturbance Function AS(T) = AT

at the outset, this solution may serve for
ccmmarison of kstantaneous and

and

tabfi,if one superposes the two

M(T) = a-r

{

o
As(T) =

a(T - ~)

t~pendent sudden deflection of the
phenmena

for ~~T<~

for O~T<~l

far T1 ~T<~.
I

(65)

As resultant deflection phencnnenonone obtains for instance the disturbance
function represented in figure 6. Particular interest will be attached to
that deflection phenanenon which characterizes the maximum velocity of
deflection of the tabs possible in practice and is given-by

a=%iax
T1

(65a) ,

.
To attain the solution one win go back to the general form of equation
(36).

. With the fact already stressed in Section VI, 1 that au starti~
conditions are zero, there follows with

FU(T) = q$%!k22%!k27
T1

after performance of the integration for the ratio —.X1
&x

and E=$, respectively,

(66) .
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With the re~tion (~), however, one can write

or, after according rearrangement and introduction of the notation in
powers for

(66a)

If one forms frcm (55) the integral

1
(66b)

(67) “
.

[

(-1)(T) Om may write forand Introduces the designation q(~)dg = q

o
(66), in analog to (52), also

Correspndi

7
to the three combinations of the roots of the characteristic

equation (53 treated in Secticm VI, 1 these three possibilities could be
investigated here also.

.

.

m
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.

Let it suffice to point out the procedure for the case of two pairs
of conjugate+omplex roots. AS analogcm to (6o) one may select the

● expression

T

Jql(~)aE .*
~{[

(-1)
B@nWUT +

(-1)

1
CUCOSWUTOKuT- (-l)c

u
o }J

with

with the Bu and CD tobe calculated according to (&lb). With (67a)

and (6o), (6&) is transformed into the form

(67a )

I

,
*

with

(6%) ,
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If one intrcilucesintO (68) aCCOI’di~ to rule (65) the argumgnt (T - T1)

instead of the independent variable
—

T and superpcmee the solutions thus
obtained, the solution for the 3ePlection phenomenon sketched in fi~e 6
amumee the ehape

with

whereas for the derivative the relation

=’lM=%%

:;i:t: ~macme must note that (6g)

- W%c

+ %J%tc‘1
is valid only in the interval

(69)

(69a)

(69b)

( 69c)

.

.

.
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The first partial report may be closed with these theoretical exposi-
tions. In the second partial report the results of the present report

. will be applied to large aircraft controlled by tabs.

VII. SUMMARY

The present report is intended as a contribution toward the clarification
of problems arising for longitudinal motions of airplanes which are con-
trolled not by direct control surface activation but indirectly by tabs.

After a general derivation of the equations of motion for the four
de~ees of freedom Xg, Zg, 3, and q and taking into consideration that

the control suYfaces are not weighticmpensated, permissible assumptions
are introduced so that the system of four degrees of freedcvnis reduced to
a system with the two degrees of freedom a and q. By the

substitution T = t~ a representation of the equations of motion which
is independent of the dynamic pressure becomes possible inasmuch as one
regards the dynamic pressure ratio qH/q and the d~sh factor ?&h as

constant.

While stability an&oscillation conditions may be discussed already
with a knowledge of the solution of homogeneous differential equation

. systems, one must know also ~he solutions of inhanogeneous differential
equation systems for the investigation of starting phencnnena. Since the
required mathematical expedients appear suitable not only for the solUtion

* of the prescribed problm but also for the analytical description of
similar problems, they are treated in the most general fomnulation for a
linear differential equation syst~ of n degrees of freedom with constant
coefficients, and arbitrary starting conditions and dfsturbancb functions
as far as the latter are integrable.

I&cm the general solution special
disturbance functions are developed.

With the definition of a function

solutions for constant and peribiiic

q(t) which depends only on the
roots of the characteristic equation one may obtain for constant disturbance
functions a solution of a very clearly arranged form; it consists of the
three constituents: constant, inhamogeneous, and homogeneous part of
the solution.

For periodic excitations one determines first the conditions which
are required to make a permanent state possible. Then one can demonstrate
that amplitude and phastiisplacaent functions exist which include the

.

.
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influenoe of the u-th excitation on the K-th coordinate. The total
solution of the permanent equations is then obtained by supe~osition of
the partial solutions.

These results yield, applied to the prescribed problem, the desired
solutlonejwith regard to numerical calculation real representation of tb
funotions is particularly emphasized.

!L’ransl.atedhyhfary L. Mahler
National Advisory Committee
for Aeronautics
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Figure 2.- Direct tab control.

.

Figure 3.- Indirect tab control.

b

.

.
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4.- Sketch of the
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